Run Time Type Information (RTTI) and typeid()

RTTI and Template Metaprogramming

What are the implications of using RTTI with template metaprogramming techniques?

Illustration representing computer hardware

Using RTTI with template metaprogramming involves a mix of compile-time and runtime type information techniques. While these two approaches can complement each other, there are some important implications to consider:

Compile-time vs. Runtime Information

Template metaprogramming operates at compile-time, while RTTI provides information at runtime:

#include <iostream>
#include <type_traits>
#include <typeinfo>

template<typename T>
void processType() {
  // Compile-time check
  if constexpr (std::is_integral_v<T>) {
    std::cout << "Integral type\n";
  } else {
    std::cout << "Non-integral type\n";
  }

  // Runtime check
  if (typeid(T) == typeid(int)) {
    std::cout << "Type is int\n";
  } else {
    std::cout << "Type is not int\n";
  }
}

int main() {
  processType<int>();
  processType<double>();
}
Integral type
Type is int
Non-integral type
Type is not int

Performance Considerations

Template metaprogramming typically has no runtime cost, while RTTI operations do. Mixing both can lead to performance trade-offs:

#include <chrono>
#include <iostream>
#include <typeinfo>

template <typename T>
void performanceTest(const T& value) {
  using namespace std::chrono;
  auto start = high_resolution_clock::now();

  // Compile-time check (no runtime cost)
  if constexpr (std::is_floating_point_v<T>) {
    // Do something with floating point types
  }

  auto mid = high_resolution_clock::now();

  // Runtime check (has runtime cost)
  if (typeid(value) == typeid(double)) {
    // Do something with double
  }

  auto end = high_resolution_clock::now();

  std::cout
    << "Compile-time check: "
    << duration_cast<std::chrono::nanoseconds>(
       mid - start).count() << " ns\n";
  std::cout
      << "Runtime check: "
      << duration_cast<std::chrono::nanoseconds>(
        end - mid).count() << " ns\n";
}

Type Erasure

Template metaprogramming can be used to implement type erasure, which can then be combined with RTTI for runtime type checks:

#include <iostream>
#include <memory>
#include <typeinfo>

class Concept {
 public:
  virtual ~Concept() = default;
  virtual const std::type_info& type() const = 0;
};

template <typename T>
class Model : public Concept {
 public:
  Model(const T& value) : value_(value) {}
  const std::type_info& type() const override {
    return typeid(T);
  }

 private:
  T value_;
};

class Any {
 public:
  template <typename T>
  Any(const T& value) : concept_(
    std::make_unique<Model<T>>(value)) {}

  const std::type_info& type() const {
    return concept_->type();
  }

 private:
  std::unique_ptr<Concept> concept_;
};

int main() {
  Any a = 42;
  Any b = 3.14;

  std::cout << "a is of type: "
    << a.type().name() << '\n';
  std::cout << "b is of type: "
    << b.type().name() << '\n';
}
a is of type: int
b is of type: double

SFINAE and RTTI

SFINAE (Substitution Failure Is Not An Error) is a template metaprogramming technique that can be combined with RTTI for more flexible type-based function overloading:

#include <iostream>
#include <type_traits>
#include <typeinfo>

template<typename T>
typename std::enable_if<
  std::is_integral<T>::value, void>::type
process(T value) {
  std::cout << "Processing integral type: "
    << typeid(T).name() << '\n';
}

template<typename T>
typename std::enable_if<
  !std::is_integral<T>::value, void>::type
process(T value) {
  std::cout << "Processing non-integral type: "
    << typeid(T).name() << '\n';
}

int main() {
  process(42);
  process(3.14);
}
Processing integral type: int
Processing non-integral type: double

When using RTTI with template metaprogramming, it's important to be aware of these implications:

  • Performance impact: Use compile-time checks where possible, reserving RTTI for when runtime type information is absolutely necessary.
  • Code complexity: Mixing compile-time and runtime type checks can make code harder to understand and maintain.
  • Portability: Not all environments support RTTI, which may limit the portability of code that relies on both RTTI and template metaprogramming.

By understanding these implications, you can make informed decisions about when and how to combine RTTI with template metaprogramming techniques in your C++ code.

This Question is from the Lesson:

Run Time Type Information (RTTI) and typeid()

Learn to identify and react to object types at runtime using RTTI, dynamic casting and the typeid() operator

Answers to questions are automatically generated and may not have been reviewed.

This Question is from the Lesson:

Run Time Type Information (RTTI) and typeid()

Learn to identify and react to object types at runtime using RTTI, dynamic casting and the typeid() operator

A computer programmer
Part of the course:

Professional C++

Comprehensive course covering advanced concepts, and how to use them on large-scale projects.

Free, unlimited access

This course includes:

  • 124 Lessons
  • 550+ Code Samples
  • 96% Positive Reviews
  • Regularly Updated
  • Help and FAQ
Free, Unlimited Access

Professional C++

Comprehensive course covering advanced concepts, and how to use them on large-scale projects.

Screenshot from Warhammer: Total War
Screenshot from Tomb Raider
Screenshot from Jedi: Fallen Order
Contact|Privacy Policy|Terms of Use
Copyright © 2024 - All Rights Reserved