std::reduce()
can produce non-deterministic results when used with non-commutative or non-associative operators because it allows elements to be combined in any order, especially in parallel execution.
To ensure deterministic results, consider these strategies:
std::accumulate()
If you need deterministic results, and your operation is non-commutative, consider using std::accumulate()
instead of std::reduce()
. std::accumulate()
processes elements sequentially from left to right, ensuring a consistent order.
#include <iostream>
#include <numeric>
#include <vector>
int main() {
std::vector<int> numbers{1, 2, 3, 4, 5};
int result = std::accumulate(
numbers.begin(), numbers.end(), 0,
[](int a, int b) {
return a - b;
});
std::cout << "Result: " << result;
}
Result: -15
When using std::reduce()
, you can specify the std::execution::seq
execution policy to enforce serial execution. This ensures elements are combined in a specific order, similar to std::accumulate()
.
#include <execution>
#include <iostream>
#include <numeric>
#include <vector>
int main() {
std::vector<int> numbers{1, 2, 3, 4, 5};
int result = std::reduce(std::execution::seq,
numbers.begin(), numbers.end(), 0,
[](int a, int b) {
return a - b;
});
std::cout << "Result: " << result;
}
Result: -15
For more complex scenarios, you might need to implement a custom reduction logic that manually controls the order of operations.
This can be done by splitting the data into chunks, processing them individually, and then combining the results in a controlled manner.
#include <iostream>
#include <numeric>
#include <vector>
#include <thread>
void accumulateRange(
const std::vector<int>& numbers,
int start, int end, int& result
) {
result = std::accumulate(
numbers.begin() + start,
numbers.begin() + end,
0,
[](int a, int b) {
return a - b;
}
);
}
int main() {
std::vector<int> numbers{1, 2, 3, 4, 5};
int result1 = 0, result2 = 0;
std::thread t1(
accumulateRange,
std::ref(numbers),
0,
numbers.size() / 2,
std::ref(result1)
);
std::thread t2(
accumulateRange,
std::ref(numbers),
numbers.size() / 2,
numbers.size(),
std::ref(result2)
);
t1.join();
t2.join();
std::cout << "Result 1: " << result1;
std::cout << "\nResult 2: " << result2;
int finalResult = result1 - result2;
std::cout << "\nFinal Result: " << finalResult;
}
Result 1: -3
Result 2: -12
Final Result: 9
std::accumulate()
Algorithm: For non-commutative operations where deterministic results are required.std::execution::seq
with std::reduce()
to enforce a specific order.These strategies help ensure deterministic results even with non-commutative operations in reduction algorithms.
Answers to questions are automatically generated and may not have been reviewed.
A detailed guide to generating a single object from collections using the std::reduce()
and std::accumulate()
algorithms